Temporally regulated neural crest transcription factors distinguish neuroectodermal tumors of varying malignancy and differentiation.
نویسندگان
چکیده
Neuroectodermal tumor cells, like neural crest (NC) cells, are pluripotent, proliferative, and migratory. We tested the hypothesis that genetic programs essential to NC development are activated in neuroectodermal tumors. We examined the expression of transcription factors PAX3, PAX7, AP-2alpha, and SOX10 in human embryos and neuroectodermal tumors: neurofibroma, schwannoma, neuroblastoma, malignant nerve sheath tumor, melanoma, medulloblastoma, supratentorial primitive neuroectodermal tumor, and Ewing's sarcoma. We also examined the expression of P0, ERBB3, and STX, targets of SOX10, AP-2alpha, and PAX3, respectively. PAX3, AP-2alpha, and SOX10 were expressed sequentially in human NC development, whereas PAX7 was restricted to mesoderm. Tumors expressed PAX3, AP-2alpha, SOX10, and PAX7 in specific combinations. SOX10 and AP-2alpha were expressed in relatively differentiated neoplasms. The early NC marker, PAX3, and its homologue, PAX7, were detected in poorly differentiated tumors and tumors with malignant potential. Expression of NC transcription factors and target genes correlated. Transcription factors essential to NC development are thus present in neuroectodermal tumors. Correlation of specific NC transcription factors with phenotype, and with expression of specific downstream genes, provides evidence that these transcription factors actively influence gene expression and tumor behavior. These findings suggest that PAX3, PAX7, AP-2alpha, and SOX10 are potential markers of prognosis and targets for therapeutic intervention.
منابع مشابه
EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewing's family of tumors.
Tumor-specific translocations are common in tumors of mesenchymal origin. Whether the translocation determines the phenotype, or vice versa, is debatable. Ewing's family tumors (EFT) are consistently associated with an EWS-FLI1 translocation and a primitive neural phenotype. Histogenesis and classification are therefore uncertain. To test whether EWS-FLI1 fusion gene expression is responsible f...
متن کاملObserved Phenotype of Ewing's Family of Tumors Neural Crest Development and Is Responsible for the EWS-FLI1 Fusion Protein Up-regulates Critical Genes in
Tumor-specific translocations are common in tumors of mesenchymal origin. Whether the translocation determines the phenotype, or vice versa, is debatable. Ewing’s family tumors (EFT) are consistently associated with an EWS-FLI1 translocation and a primitive neural phenotype. Histogenesis and classification are therefore uncertain. To test whether EWS-FLI1 fusion gene expression is responsible f...
متن کاملMir-29b Mediates the Neural Tube versus Neural Crest Fate Decision during Embryonic Stem Cell Neural Differentiation
During gastrulation, the neuroectoderm cells form the neural tube and neural crest. The nervous system contains significantly more microRNAs than other tissues, but the role of microRNAs in controlling the differentiation of neuroectodermal cells into neural tube epithelial (NTE) cells and neural crest cells (NCCs) remains unknown. Using embryonic stem cell (ESC) neural differentiation systems,...
متن کاملThe Ews/Fli-1 fusion gene switches the differentiation program of neuroblastomas to Ewing sarcoma/peripheral primitive neuroectodermal tumors.
Neuroblastoma (NB) and the Ewing sarcoma (ES)/peripheral primitive neuroectodermal tumor (PNET) family are pediatric cancers derived from neural crest cells. Although NBs display features of the sympathetic nervous system, ES/PNETs express markers consistent with parasympathetic differentiation. To examine the control of these differentiation markers, we generated NB x ES/PNET somatic cell hybr...
متن کاملCells and Define Novel Targets Tumors to Both Endothelial and Fetal Neural Crest-Derived DNA Microarrays Reveal Relationship of Ewing Family
Ewing family tumors (EFTs) are small round blue cell tumors that show features of neuroectodermal differentiation. However, the histogenetic origin of EFTs is still a matter of debate. We used high-density DNA microarrays for the identification of EFT-specific gene expression profiles in comparison with normal tissues of diverse origin. We identified 37 genes that are up-regulated in EFTs compa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neoplasia
دوره 7 6 شماره
صفحات -
تاریخ انتشار 2005